3D printing offers an efficient method to improve current manufacturing limits across economic sectors such as transport, construction, and medical and dental industries allowing rapid prototyping and on-site production and repairs. Progress in 3D printer development has led to faster, larger, and more accurate printers, but these require more functional materials.
3D printing use in the medical industry is restricted by the lack of biocompatible and biodegradable materials that are suitable for the 3D printing of medical devices with silicone-like mechanical properties. Korean researchers have recently 3D printed a more affordable and customizable artificial testicle for patients in need of a testis transplant. The researchers’ novel silicone artificial testicle can be 3D printed to match specific patient anatomies, making them more comfortable and lifelike. With the aim of producing 3D printing materials that are biocompatible and non-toxic, researchers in Australia have developed a ceramic-based ink for 3D-printing bone parts complete with living cells that could be used to repair damaged bone tissue.


Growing global trends toward using sustainable materials and manufacturing processes lead to challenges and opportunities. There is progress toward a sustainable building material to 3D print houses made from local on-site soil, using a 3D printer to create a load-bearing structure. In New Zealand, a 3D printed replica of a 230-year-old Hawaiian outrigger (canoe) is in progress, using shavings and wood chips to mix a polymer paste that is being adapted for use in a large robotic printer.
3D printing produces parts layer-by-layer by melting and fusing powder materials allowing the manufacture of complex geometry and reduced manufacturing time and material waste. Manufacturers see value in improved materials that are reliable and cost-effective.
About IDTechEx